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1. INTRODUCTION

1.1  Project Overview

AutoAlert applies new signal processing algorithms to passive acoustic data to
advance the state of practical acoustic incident detection techniques. These techniques,
originally developed for nationa defense applications, will performreliable, automatic,
nearly instantaneous, all-weather incident detection under highly variabletraffic
conditions. Effective operation of urban high-capacity ITS systems requires speedy
detection of incidents at chokepoints, such as tunnels, bridges and other aerial structures,
and dense urban arterials. Boston’s Central Artery/Tunnel (CA/T) project is an example
of anew ITS system where such detection is critical. AutoAlert overcomes shortcomings
of loop and video detectors, such astheir inability to distinguish between incidents and
congestion, and the need for a human-in-the-loop for video detection. The AutoAlert
processor “hears’ an incident before congestion builds, and can be used either as an
independent detector, or its outputs can be combined (data fusion) with other detector
outputs for joint improved decisions and incident verification.

The problem of rapid, reliable acoustic incident detection is more complex and
difficult than the problems of freeway traffic flow monitoring or vehicle type
identification, for which acoustic sensors have already been applied. The AutoAlert
processor (see Fig. I-1) will make use of readily available commercial acoustic sensors
(e.g., AT&TIVHSNET-2000™). What iskey to AutoAlert isthe signal analysis
and detection algorithms that we will employ. The agorithms will provide a new level
of incident detection timeliness and reliability (low false alarms) by applying
sophisticated statistical models: Hidden Markov Models (HMM) and Canonical Variates
Anaysis (CVA). These are used to analyze both short-term and time-varying signals that
characterizeincidents.

1.2 Principles of Innovation
AutoAlert algorithms provide performance innovations that offer significant
improvements over today’s most “advanced” acoustic traffic sensor systems:

Provide nearly immediate detection, with no alertment delays, before
congestionbuilds

React to an incident directly, not just the symptomof an incident (e.g.,
congestion)

Provide low false alarm rates via simultaneous analysis of short-,
medium-, and long-term acoustic feature patterns
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Figure 1-1 AutoAlert Processor Automatically Monitors for Incident Features

That Appear Against Changing Background Noise

*  Offer reliable, all weather, day or night detection under varying traffic

conditions through the use of sophisticated data models

*  Report a confidence level for detections that can be used by AutoAlert as a

“self—test” of algorithm performance

*  Accommodate minute—to—minute normal variation in traffic conditions

using adaptive, real—time analysis of the background noise

*  Capture dynamic characteristics of very short—term acoustic patterns for
better detection and identification of incidents in noisy traffic conditions
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Account for that fact that no two incident acoustic signatures (e.g., “screech,
crunch”) are identical by using probability-based modeling

Apply unique new agorithms developed and proven by TASC for defense
and other commercial acoustic applications.

1.3 ITS Need

A number of sensor systems have been designed to monitor traffic conditions
(pressure sensors, in-ground loop detectors, digital video--based flow estimators and
acoustic sensors like the AT& T SmartSonic™ surveillance system). However, they do not
distinguish between impeded traffic flow and an incident. They can only provide inferred
detection of incidents because they only sense and report the resulting congestion. They
react to the symptoms of an incident, rather than to the incident directly, and are therefore
less effective. Thislimitation is particularly prohibitive in the monitoring of traffic
chokepoints that have limited or constrained access (e.g., tunnels, aerial structures), where
asingle incident can cause back-ups to form at rates of hundreds of feet per minute.
Immediate detection and identification of incidents in such corridorsimprovestraffic flow
and driver safety by reducing the time-lag between the actual event and the emergency
response. In addition, loop detectors have been historically prone to high failure rates,
while video camerainstallations are hampered by adverse environments, such as darkness,
precipitation, fog or dust, and require human monitoring of many cameras for immediate
detections. The AutoAlert processor provides automated, nearly immediate, direct
acoustic incident detection.

14  Technical Challenges

I ncidents such as automobile accidents share common characteristics that make
them immediately recognizable to human listeners (screech of tires, fender crunch,
breaking glass). These characteristics are represented in the very short-term (transient)
acoustic pattern of the incident. They provide sufficient information for an automated
agorithm to distinguish an incident from average traffic background, aswell as other
similar but benign background events (car-door slamming, car backfiring, sirens, thunder,
trucks hitting potholes). The design of a detection processing algorithm is critical to meet
such requirements because of

The high degree of random variation in acoustic signatures from incident to
incident (e.g., no two tire-screeches are identical)

Varying environmental (weather) and traffic conditions (volume,
composition)
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The need to keep false alarm rates low in the face of these complexities.

These factors make the performance of classical and many modem detection and
identification techniques generally inadequate for this problem.

1.5  New Solutions with Broad Applications

TASC' s new Hyperstate algorithms, which are the core of AutoAlert, overcome
shortcomings of classical detection and identification techniques by:

Adaptively characterizing time-varying background noise, continually
adjusting for varying environmental and traffic conditions.

Looking for abrupt changes from background noise (such as sudden changes
in energy patterns at certain frequencies) that could signal an incident.

Automatically accounting for expected random variation in incident
signatures using built-in stochastic models.

Using sophisticated simultaneous analysis of both long-term (several
seconds) and short--term (milliseconds) acoustic patterns to accurately
identify incidents while lowering false alarm rates.

Reporting a probability/likelihood-based confidence level with each decision
to improve decision quality and allow “ self-tests” of AutoAlert
performance.

The AutoAlert processor provides a set of computer-based algorithms that can be
mated with avariety of existing commercial acoustic sensorswhich may already bein
place for traffic flow monitoring. In addition to serving as a self-contained incident
detection product, the AutoAlert technology can be used in several other ways.

In conjunction with existing detection systems, serving as an automated cue
to operatorsto focus their attention or cameras on a specific area.

Detection of acoustic emergency beacons, preprogrammed with distinctive
sound patterns, that are automatically emitted by distressed vehicles.

Identify and track acoustic probes (using avehicle' sunique acoustic
signature), thus offering independent estimates of traffic flow that can be
used to verify and calibrate other flow sensors.

Analyze datafrom avariety of non-acoustic sources, including loop
detectors, using the underlying Hyperstate methodology.

The core AutoAlert signal processing technology has already been devel oped
under defense applications and offers a unique capability not found in any existing
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system. As aresult, AutoAlert has the potential to provide alow-risk, high-value
capability for ITS.
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2. RESEARCH PLAN

21  Statement of Work
The AutoAlert program proceeded in two stages: 1) Design and Preliminary
Evaluation, and 2) Feasibility Demonstration. Four tasks were accomplished to complete

Stage 1, and one task for Stage 2.

Stage 1: Design and Preliminary Evaluation

Task 1.1: Assemble Acoustic Database

Obtain pre-recorded accident data from sources such as the Insurance Institute for
Highway Safety, vehicle crash test performed by US. auto manufacturers, NHTSA, and
commercialy available audio “sound effects’. Collect background traffic noise data under
varying operational conditions as required. These datawill serveto build the very
important database component of “incident-fi-ee” data.

Task 1.2: Acoustic Feature Analysis

Analyze the acoustic database to define accident and incident types, and to
determine the optimal feature sets for acoustic discrimination of different incident types
(e.g. spectra energy, bispectral energy, transient types). Determine the range of dynamic
time scales required to capture both transient and longer duration sounds. For example, a
transient burst of acoustic energy around 500 Hz lasting from 0.5 to 3 sec may be one
feature of a vehicle impact.

Task 1.3 Optimized Algorithm Architecture

Tailor the AutoAlert algorithms to provide a processing architecture that is
optimized for incident detection and classification. Select appropriate Hyperstate model
parameters, such as the number of model states, length of time scales, and number of time
scales. | dentify appropriate metrics for model goodness of fit to data. Select decision
procedures and criterion for operator aerts based on AutoAlert processing. Implement a
prototype AutoAlert software system on a 486-class PC or low-end workstation.

Task 1.4: Preliminary Performance Testing

Using controlled experiment data extracted from the acoustic database, perform
preliminary AutoAlert performance evaluation. The data will be used in a simulation
mode to develop test data sets that reflect varying signal-to-noise ratios (SNR).
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AutoAlert's false dlarm and correct detection performance as a function of SNR for
selected incident typeswill be evaluated.

Stage 2: Feasibility Demonstration for Operational Data

Task 2.1 Final Performance Testing

Demonstrate the overall feasibility of AutoAlert processing in the laboratory.
Additional analysis of controlled experiment data begun in Task 1.4 will be completed.
Based on lessons learned, the agorithm will be modified as required. In addition, field data
collected in “uncontrolled experiments’, e.g. from recordings made on-site at a Boston
highway, will be evaluated in the laboratory. Thiswill allow important features of the
agorithm, such as real-time background noise characterization and response to random
variationsinincident characteristics.

2.2 Research Milestones

The two major milestones for this project have been completed, Milestone 1 and
the work leading up to it was reported in the AutoAlert Interim Report [Ref.1], while
Milestone 2 is reported on in this report.

Milestone M1 (Stage 1): Establishment of acoustic database, design of an optimized
algorithm architecture, implementation of prototype a gorithms based on this architecture,
and preliminary performance evaluation using controlled, synthetic data sets

Milestone M2 (Stage 2): Overall feasibility demonstration using available“ controlled
“and “uncontrolled” field data. Analysis of correct detection and fal se alarm performance
for realistic traffic environments, and operating-aiding functionality

2.3 Documentation of Results

This Final report, in combination with the Interim Report [Ref. 1], provides a
complete documentation of the AutoAlert project. Most of the materia in the Interim
Report is not repeated in this report -- references to the Interim document are included in
this Final Report at appropriate points. The Interim Report covers the following topics:

Theoretical background for multiresolution Hyperstate signal
processing used in AutoAlert
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Discussion of model development procedures

Detailed description of sources of acoustic data and the generation of
complex hybrid acoustic data sets

Analysisof incident and background characteristicsto identify
discriminating features

Preliminary AutoAlert algorithm analysis architecture

Appendix listing detailed results of feature analysis.

This Final Report coversthe following topics.

AutoAlert  Final Report

Project overview

Research plan and milestones

Description of the acoustic data sets used for performance analysis
|dentification of the key acoustic features for this data

Description of the optimized AutoAlert algorithm architecture used for
performanceanalysis

Data processing results

Description of an AutoAlert implementation for real-time data
collection and processing

Summary of project achievements.



3. ACOUSTIC DATABASE

3.1 TheNeed for Synthetic, Controlled Signals

The fundamental resource in the prototype AutoAlert system is the acoustic
database. The acoustic database contains two types of audio data: background traffic
sounds which may be thought of as“noise”; and tréffic incident sounds which are the
“signal” the system is trying to detect. The input to the detection algorithm described
aboveisthe combination of background and incident sounds. In order to assess and refine
the prototype detection algorithm the acoustic database must be a controlled input.

3.2  Data Sources and Description

One approach taken to generate an acoustic database of synthetic traffic incident
data with which to test against isto employ a hybrid model of two real data sources, a
crash sound effects CD and field collected traffic recordings.  The crash sound effects
were commercially-availabledigital recordings of specific car crash scenarios. Conditions
such as the number of cars involved, microphone location, vehicle direction, and
approximate speed about each crash were specified in textual format with each recording.
Thefield recordings are of “normal” traffic and were collected using AT& T’ s SmartSonic
Sensors and stored in audiovisual (videotape) format. Data was collected on two lanes
of afour-lane divided highway under dry daylight conditions. The audio portion of the
field recordings was captured with the microphone array and individual cars and the
sounds they produce can be correlated using the visual portion of the recordings.

The sound effects recordingsinclude 22 crashes, various horns and siren incidents,
and 10 tracks of normal traffic passing. With atotal tape time of approximately 45
minutes, the usable incident and background datais about 12 minuteslong. The duration
of the events vary widely. Some are as short as 3 seconds others as long as 20 seconds.
Theremainder of the usable datais. in the form of normal traffic passing by the
microphone. While the text included with each recording provides a description of the
road and vehicles, there is no specification of the recording system used (e.g. microphone
type, source to microphone distance, or mastering process).  Accordingly some
assumptions were made, however the overlap in traffic conditions between the field
recordings and these sound effects offered a qualitative and partially quantitative
consistency verification.

Four hours of AT&T field recordings, al in VHS format, were previewed. The
field recordings did not include any incidents which could have been used as signals.
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Twenty-five minutes of divided, four-lane highway traffic sounds were digitized from the
field recordings for use in generating the initial acoustic database of traffic background

noise. Normal operationa sound from all types of vehicles, including motorcycles, cars,

trucks, busses, and tractor-trailer rigs, was captured. A single channel of the two-channel

VHS acoustic data was processed -- the two channels did not differ significantly. Asan

additional future pre-processing step, the two channels of data could be combined to

reduceinstrument or random acoustic noise.

read by both Matlab™ and standard sound cards on the PC. This allows the database to
be assembled with Matlab routines and then “played” through speakers for qualitative

In order to assemble the acoustic database and provide the detection algorithm
accesstoit, thedigital recordings from both sources were converted into acommon
format and stored in magnetic form on a PC. This common format, called WAV, can be

verification.

33

Hybrid Data Sets For Analysis

In order to provide a sufficiently rich database and allow for parametric variation
of the relative magnitude of crashesrelative to background data, a variety of mixtures of

operational field traffic recordings and individual crash sounds were developed. Table 3-|

summarizes the data sets that were devel oped.

Table 3-|

Data Set Description Summary

cal

45 sec 2 1 no -
118 sec 15-20 1 1 no 8.8
3 110 sec 15-20 2 1 no -
2a 118 sec 15-20 1 172 no 4.4
2b 118 sec 15-20 1 1/4 no 2.2
2c 118 sec 15-20 1 1/8 no 1.1
2d 118 sec 15-20 1 1/16 no 0.55
2n 118 sec 15-20 1 1 yes 0.9
2an 118 sec 15-20 1 172 yes 0.45
2bn 118 sec 15-20 1 1/4 yes 0.23
2cn 118 sec 15-20 1 1/8 yes 0.11
2dn 118 sec 15-20 1 1/16 yes 0.055

AutoAlert Final Report
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Varying Backgrounds and Loud Accidents -- llustrations of Cases 1 through 3
are presented in Figures 3-1 through 3-3. The amplitude signature for each datacaseis
shown, with passing cars and accidents indicated. The accident amplitudes in these cases
reflect an accident occurring close to the microphone.

Accidents of Varying Loudnessin Traffic -- Cases 2athrough 2d are derived
from case 2. They areidentical to case 2, except that the acoustic signature of the crash
has been scaled by the scale factor indicated in Table 3- 1. For example, the crash used in
case 2 has been scaled by afactor is /2 to generate case 2a. The Accident Energy Ratio
givenin Table 3- 1 is a measure of the relative intensity of signal and noise/background
(SNR), and istheratio of the variance of the accident signal to the background signal over
the interval of the accident. It measures the relative intensity of the signal relative to other
traffic sounds. Figures 3-4 through 3-7 show the scaled signature of the accident segment,
the background (absent of passing cars or other noise), and the combined accident
signature and background for each case.

Accidents of Varying Loudnessin Traffic and Noise -- Cases 2n and 2an
through 2dn correspond to cases 2 and 2athrough 2d. They differ in that, in addition to
scaling, low-frequency noise with amplitude of approximately half that of the accident
has been added to the entire 118 second time series. The frequency range for this noise
was approximately 0-500 Hz, which overlaps the first Hyperstate bandpass feature
response range. Thisnoiseis representative of what might result from rain or the noise
from traffic on adistant highway, and was included to evaluate its impact on algorithm
performance. The Accident Energy Ratio given in Table 3-1 istheratio of the variance of
the accident signal to the noise signal over theinterval of the accident. It measures the
relative intensity of the signal relative to other traffic sounds and noise. Figures 3-8
through 3-12 show the scaled signature of the accident segment, the low-pass noise, and
the combined accident signature and noise for each case.
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4. ACOUSTIC INPUT DATA CHARACTERIZATION

4.1 Analysis of Incident and Background Features

As aprecursor to designing the detection algorithm and the acoustic database, the
incident and background acoustic data was characterized according to three general signal
features: wave form amplitude; central statistical moments (e.g. mean, kurtosis) ; and
power spectral density. The purpose of this characterization was to identify individual
features or combinations of features that could be used to distinguish an incident from the
background and possibly even one type of incident from another. Identifying the
differing features of vehicle crash sounds and passing of vehicle quantitatively isan
important step toward building a Hyperstate model to describe the dynamics of those
featuresover time. To do thisacombination of features was reviewed. The following
section outlinesthe signal feature characterization and analysis.

Theraw digital datafrom both sources is stored as sixteen bit wave forms sampled
at 44.1 kHz. This high resolution data is down sampled to 16 kHz before processing to
reduce the computational requirements, and because al of the significant signal features
could be observed at frequencies less than 8 kHz (determined by the Nyquist theorem).
Individual events are then extracted from the down-sampled data and stored in separate
files. Thethreetypesof signal features are derived from each event file.

4.2 Crash Data Features
For the first step of Hyperstate analysis, spectral characteristics were chosen as
the features to use to define the states of the Hyperstate models. Thisis because of the
strong, consistent incident “signature” produced by the crash eventsin out database. In
future refinements of the baseline algorithm architecture, additional features described in
Section X will be considered as well. Figure 4-I shows a plot of frequency intervasin
which significant energy was present at some time around a crash, for several
representative crashes in the database. Looking down the graph vertically at any interval,
we can see that severa intervals are common to most crashes. We have selected four of
those intervals (spectral bands) for analysis in the prototype. They are:
: 100-400 Hz

800-1 140 Hz

1560-1760 Hz

2200-2700 Hz
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Crash Frequency Feature Overlaps
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Figure 4-1 Identifying Common Crash Spectral Features

Appendix A of the Interim Report [Ref. 1] contains additional representative

plots depicting a wide range of features of illustrative accident and background data sets.
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5. OPTIMIZED ALGORITHM ARCHITECTURE

This section describes the optimized AutoAlert algorithm that was implemented
for analysis of operational data. For a detailed discussion of the general form and
mathematical theory underlying the multiresolution Hyperstate Algorithms used to
implement AutoAlert, see the description in the AutoAlert project’s Interim Report [Ref.

1

5.1 Multiresolution Algorithm Overview

The core agorithms for the AutoAlert processor belong to a unique class of
Hyper state algorithmsthat have already been developed by TASC. They have been
eva uated on acoustic datain other application areas, such as underwater transient
detection and vehicle sound quality analysis. The primary objectives of this concept
feasibility investigation are to tailor the algorithms for AutoAlert's incident detection for
ITS systems, and to rigorously evaluate their performance.

The Hyperstate algorithms to be used in the AutoAlert processor provide new
levels of performancein “acoustic fingerprinting.” Thisisachieved by using astochastic,
model-based procedure that can analyze the dynamics of atime-varying process on
multiple time scales. Models corresponding to persistent acoustic feature patterns for
incidents and non-incidents are devel oped, stored and used to scan for incidents. Models
that characterize the changing traffic background level are computed adaptively, in real
time.

A hierarchy of Hidden Markov Models (HMM), in conjunction with adaptive
Canonica Variates Analysis (CVA), isthe mathematical framework that comprisesthe
Hyperstate procedure. A family of these HMM models, operating on multiple time
scales, is used to classify complex patterns of time-varying acoustic features (such as
frequency dynamics) that differentiate traffic background noise from sounds associated
with incidents. Such models have been applied recently to complex acoustic analysis
tasks, such as speech recognition.

52  Algorithm Architecture

The general AutoAlert processing architecture is depicted in Figure 5-1. Anaysis
of operational field test data shows that a particular set of five feature identification filters
and two temporal resolutions are appropriate for optimized data processing. Figure 5-2
illustrates the architecture used for data processing.
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Background Modeling -- Acoustic data is processed along two paths. The first
involves adaptive modeling of the background noisein the traffic scene, such asrainfall or
traffic sounds from distant roads. Canonical variates state-space modeling is used to
compute a new background model every 0.1 sec. A statistical measure of similarity
between the current and previously computed background model, called the Discriminant
Information, is computed to decide if the background isslowly varying or changing
rapidly. If the background is slowly varying, the latest model is adopted. If the
background model has changed significantly over the last 0.1 s, this could indicate that a
vehicle has come into range of the sensor, and the background model is not adopted. This
alows slow evolution of the background to be tracked, while preventing acoustic
information from passing vehicles or crashes from being put into the background model.

Spectral Feature Library -- In order to define the identification filters for the
Stage 0 Hyperstate processing illustrated in Figure 5-2, filters tuned to each of the four
frequency bands identified in Section 4.2 and Figure 4-| areimplemented. Thefiltersare
implemented using state-space whitening filters with frequency responses given by the
spectrum plotsin Figure 5-3. These four filters are combined with an all-passfilter
(uniform frequency response) to produce the five labeling filters. Thesefiltersare
designed to have maximum response when dataiin their respective pass-bands are
processed. Since these pass-bands were selected to match accident features, they are
optimized for this detection.

The adaptive background model which is continuously computed by AutoAlertis
used by AutoAlert as a*“subtraction” filter (‘whitener”) to remove background effects
while the spectral features are searched for. Thisfiltering must be accounted for in
defining the Feature Model Filters, causing aslight transformation of the original
frequency response of the baseline feature library models. Thisisillustrated in Figure 5-4.
Thelikelihoods for each of the combined feature models are computed every 0.005 sec, in
order to allow rapidly varying and transient acoustic effects to be captured.

Hyper state Modeling -- The final stage of the optimized architecture
involves multiresolution feature modeling using Hyperstate models. Three Hyperstate
models were devel oped, one representing the dynamics on a 2.5 second time scale for each
of the categories. background (no accidents or vehicles), passing vehicles, and accidents.
Five hundred likelihoods from the feature identification stage are processed every 2.5
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seconds, and each 2.5 seconds the Hyperstate analysis identifies which of the three
classification models is most likely, using a maximum likelihood criterion.
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Figure5-3  Spectral Feature Library for AutoAlert Prototype
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6. DATA PROCESSING RESULTS

6.1  Summary

Detecting Accidents - Using the prototype AutoAlert algorithm described
above, the data cases described in Table 3-| were analyzed, with the result summarized in
Table 6-1. Asthe table indicates, the AutoAlert algorithms do well at detecting the
accidents for a range of accident energy ratios, al the way down to accident scale factors
of /4, for both the cases with and without added noise. This reflects good real-world
performance, since scale factors of 1/8 and lower correspond to accidents that occur that
are quieter than the passing vehicles on the highway. For low signal-to-noise ratios scale
factors of 1/8 and 1/16) in the absence of added |ow-pass noise, accidents are detected,
but are classified as passing vehicles rather than as accidents.

Table 6-1 Summary of Classification Performance

1 no - v v
1 1o 8.8 v v
1 no - v e
2a 12 no 4.4 v v
2b 1/4 no 2.2 v v
2¢ 1/8° no 1.1 v
2d 1/16 no 0.55 v
2n 1 yes 0.9 v
2an 172 yes 0.45 v
2bn 1/4 yes 0.23 4
2cn 1/8 ves 0.11
2dn 1/16 yes 0.055

Detecting Passing Vehicles -- In addition to accident detection, the AutoAlert
classifier was also designed to detect passing cars and differentiate them from accidents.
The agorithm did this successfully for scale factors down to I/16 in the absence of
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lowpass noise. As shown in the next section, both single and multiple passing vehicles
were detected and differentiated from accidents and the background.

Effect of Lowpass Noise -- This noise was added to stress the performance of the
AutoAlert algorithm and evaluate how it would perform in the presence of other
significant distracting sounds, such asrainfall. Table 6-1 indicates that the addition of this
noise did not hinder accident detection, but it did make passing vehicles more difficult to
detect. Thisisdue to the added low-frequency noise (in the frequency range from O-500
Hz) which shares characteristics in common with the features and feature patterns of the
passing cars, and effectively “ masks’ them from the detector. Because the accident
signature was composed of a more complex collection and pattern of frequency features,
it was detectable even in the presence of the added |ow-pass noise.

6.2 Detailed Analysis Results
This section presents the detailed data processing results that were used to
develop Table 6- 1, including direct analysis of the Hyperstate algorithm processing.

6.21 Varying Backgroundsand Loud Accidents - This anaysisincludes a
discussion of how to interpret the Hyperstate/AutoAlert intermediate data displays.
Figure 6-1 shows the amplitude plot of the accident and passing vehicles for Case 1.
Figure 6-2 shows the first stage Hyperstate output data. Each of the five Feature
identification filtersis listed on the vertical axis. Timeison the horizonta access. The
gray arrow indicates where the accident occurred in the data. Every 5 msec, acircleis put
on the graph corresponding to the most likely of the five feature models. The distinct
pattern associated with the crash, exciting all five feature models with afew secondsin a
specific pattern, is clearly visible.

Figure 6-3 shows the output of the AutoAlert classifier. Each of the three
possible classification decisions, “ Crash”, “Passing Vehicle”, or “ Background” islisted
on the vertical axis. Every 2.5 seconds, AutoAlert makes a decision as to which of the
three event typesis most likely. That sequence of decisions is shown by the circles on
the plot. AutoAlert correctly identifies the accident and the passing vehicles,
distinguishing both from the background.

Detection results from Case 2, involving multiple passing cars, is shown in Figures
6-4 through 6-6. The accident, whose time of occurrenceisindicated by the gray arrow in
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the figures, is correctly detected, aswell asthe passing vehicles. Periods of vehicle-free
background are also identified correctly.

Similar good detection and event differentiation performance is also seen in the
Case 3 results presented in Figures 6-7 through 6-9. In this case atwo car accident
(collision) occurs. AutoAlert correctly identifies the event type and span of the two
accidents. Because the acoustic signatures of the two accidents overlap in time (one event
is still being completed while the other is beginning) and have a separation that is smaller

than the 2.5 sec resolution of the classifier--there is no gap in the detection of the two
accidents.
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1. INTRODUCTION

1.1  Project Overview

AutoAlert applies new signal processing algorithms to passive acoustic data to
advance the state of practical acoustic incident detection techniques. These techniques,
originally developed for national defense applications, will perform reliable, automatic,
nearly instantaneous, all-weather incident detection under highly variable traffic
conditions. Effective operation of urban high-capacity ITS systems requires speedy
detection of incidents at chokepoints, such as tunnels, bridges and other aerial structures,
and dense urban arterials. Boston’s Central Artery/Tunnel (CA/T) project is an example
of a new ITS system where such detection is critical. AutoAlert overcomes shortcomings
of loop and video detectors, such as their inability to distinguish between incidents and
congestion, and the need for a human-in-the-loop for video detection. The AutoAlert
processor “hears” an incident before congestion builds, and can be used either as an
independent detector, or its outputs can be combined (data fusion) with other detector
outputs for joint improved decisions and incident verification.

The problem of rapid, reliable acoustic incident detection is more complex and
difficult than the problems of freeway traffic flow monitoring or vehicle type
identification, for which acoustic sensors have already been applied. The AutoAlert
processor (see Fig. 1-1) will make use of readily available commercial acoustic sensors
(e.g., AT&T IVHS NET—2000™). What is key to AutoAlert is the signal analysis
and detection algorithms that we will employ. The algorithms will provide a new level
of incident detection timeliness and reliability (low false alarms) by applying
sophisticated statistical models: Hidden Markov Models (HMM) and Canonical Variates
Analysis (CVA). These are used to analyze both short-term and time-varying signals that
characterize incidents.

1.2 Principles of Innovation
AutoAlert algorithms provide performance innovations that offer significant

improvements over today’s most “advanced” acoustic traffic sensor systems:

*  Provide nearly immediate detection, with no alertment delays, before
congestion builds

* React to an incident directly, not just the symptom of an incident (e.g.,
congestion)

»  Provide low false alarm rates via simultaneous analysis of short—,
medium—, and long—term acoustic feature patterns
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6.2.2 Accidents of Varying Loudnessin Traffic

Cases 2a through 2d are identical to Case 2, except that the accident signature in
Case 2 was progressively reduced by afactor of 1/2 while passing vehicletraffic remained
unchanged. Figures 3-4 through 3-7 show the segment of each dataset that contains the
accident and the relative amplitudes of the scaled signatures, plusthelocal background
with which they are combined to form the input signal to AutoAlert. Figures 6-10
through 6-13 show the results of the AutoAlert feature labeling step in the top half of
each figure, and AutoAlert classification resultsin the bottom half of each figure.

For Cases 2a and 2b (with accident scale factors of 1/2 and 1/4 respectively), the
accident are detected and correctly identified. For Cases 2¢ and 2d (with accident scale
factors of 1/8 and 1/16 respectively), the accidents are detected, but are classified as
passing cars rather than accidents. These missed identifications are due to the low signal
strength (accidents are quieter than the passing cars) associated with these cases. For al
cases, the passing vehicles are correctly identified.
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6.2.3 Accidents of Varying Loudness in Traffic and Noise

Cases 2n and 2an through 2dn are identical to Cases 2 and 2a through 2d,
except that additional low-frequency noise was added uniformly to the acoustic time
history, as described in Section 3. Figures 3-9 through 3-1 1 show the segment of each
dataset that contains the accident and the relative amplitudes of the scaled signatures, plus
the added noise with which they are combined to form the input signal to AutoAlert. The
amplitude of the noiseislarge relative that of the accident, even for thefirst signature
scale factor of 1/2  Figures 6-14 through 6- 18 show the results of the AutoAlert feature
labeling step in the top half of each figure, and AutoAlert classification resultsin the
bottom half of each figure.

Theresults parallel those obtained for the case described in Section 6.2.2 where no
additional low-frequency noise was added. For Cases 2n, 2an and 2bn (with accident scale
factors of I/l, 1/2 and /4 respectively), the accident are detected and correctly identified.
For Case 2cn and 2dn (with accident scale factors of 1/8 and I/1 6), the accidents are not
detected. These missed identifications are due to the low signal strength (accidents are
quieter than the passing cars) associated with these cases. For all of these, cases, the
passing vehicles are not detected. Thisis due to the added |ow-frequency noise which
shares characteristics in common with the features and feature patterns of the passing
cars, and effectively “ masks’ them from the detector.
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7. REAL-TIME DATA COLLECTION

The objectives of this part of the research were to demonstrate prototype
operation of AutoAlertin areal-time data capture mode, once its performance had been
demonstrated with controlled, archived operational field data. Resource constraints did
not allow for extensive optimization of the algorithm performance in the real-time mode,
but the implementation of a prototype algorithm for real-time data processing was
completed and analyzed.

7.1 Algorithm Implementation

Using results of related TASC work on restructuring of Hyperstate a gorithms to
alow them to run in serial, vs. batch, mode, AutoAlert was converted to a seria
implementation in Matlab and implemented on a PC hardware platform that supports
real-time data capture. This implementation uses a software loop written in the C
languageto:

Obtain ablock of real-time audio datafrom the PC analog-to-digital

(A/ID) converter hardware through the low-level Audio Services of
Microsoft Windows 3.1

Pass the data block to Matlab for processing by the serialized
Hyperstate algorithms.

Display the Hyperstate algorithm output for this data block (i.e., the
most likely model: No Accidents/Vehicles Detected, Passing Vehicles
Detected, or Accident Detected) and save it to disk.

The software continuously repeats the above three steps and thereby converts a
continuous stream of input data from the A/D converter into a continuous stream of
model likelihoods.

7.2  Prototype Hardware Suite and Architecture

The architecture for the prototype rea-time AutoAlert is shown in Figure 7-1.
As shown on the left in the figure, this architecture uses the A/D Converter on the
ENSONIQ Soundscape Wavetable Audio card to convert audio signalsfrom the
condenser microphoneinto digital format. The low-level Audio Services of Microsoft
Windows 3.1 represent the standard interface between the ENSONIQ card and the C
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Language Software Loop. Thisinterface isimplemented using a ping-pong direct memory
access (DMA) buffer scheme: the Windows operating system fills one of a pair of
memory bufferswhile the C Language Software L oop reads the other. Windows and the C
Language Software L oop alternate between writing/reading each DMA buffer- hencethe
nameping-pong. After the C Language Software Loop reads aDMA buffer, it passesthe
block of digitized audio datato Matlab, which executes the serialized feature identification
and Hyperstate categorization a gorithms on the data block and then passes the model
likelihoods back to the C Language Software Loop, whereit isdisplayed and stored.

Condenser
Microphone

?

ENSONIQ Soundscape
Wavetable Audio Card

A/D Converter

C Language
Dual DMA Buffers Software Loop Matlab
A _E - 1. Read DMA buffers 1. Perform serialized feature
MS Windows 3.1 N\, [|>  Processbuffer bata identification (CVA)
Low-Level Audio Services \ with Matlab 2. Perform serialized
3. Display/store Matlab) -
—1 r- -p output Hyperstate categorization

Figure 7-1 Prototype AutoAlert Real-time Architecture

7.3 Performance of the Prototype and its Optimization

The basic structure of thisimplementation proves the concept of real-time
Hyperstate processing for AutoAlert. However, the rate at which the software loop
repeats directly affects throughput performance and is limited by the performance of
Matlab and the Windows 3.1 operating system. Specifically, this implementation uses the
Windows 3.1 operating system to simultaneously execute the tasks of input A/D
conversion, digital signal processing (DSP), and output display/storage. Windows 3.1 is
also used for communications between the tasks. Microsoft Windows 3.1 was not
optimized for this type of real-time multitasking operation. As a result, the throughput
performance of thisimplementation would be improved if the same structure were hosted
on a dedicated DSP board (e.g., Data Trandation’'s Fulcrum Delta-Sigma or National
Instruments AT-DSP2200). These boards are designed specifically to multitask input
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A/D conversion, DSP, and output display and storage. Microsoft Windows was used
because it was the operating system under which the laboratory version of AutoAlert was
developed - resource constraints did not allow rehosting of the structure onto a DSP
board.

The throughput performance of thisimplementation isalso limited because it uses
Matlab to perform the DSP functions of feature identification and model classification.
Matlab is very flexible for developing algorithms in the laboratory, but it is not optimized
for real-time use. Asaresult, eachiteration of the C Language Software Loopis
unnecessarily slowed when Matlab executes the serialized feature identification and model
classification agorithms,

Thefollowing isan analysis that shows:

The current Matlab implementation is too slow to operate
continuously at the throughput rate required for AutoAlert

Theframework for thisimplementation will execute quickly enough for
AutoAlertif it is rehosted in the C language on a commercialy-
available DSP board.

Figure 7-2 illustrates the number of Matlab floating point operations required per
iteration of the C Language Software Loop during real-time AutoAlert execution.
Background model processing (every 100 loops) and Hyperstate categorization (every
500 loops) require 2.25 and 0.25 million floating point operations (MFLOP)
respectively, but these tasks occur infrequently compared to the regular calculations that
require 0.016 MFLOP for each loop. The average MFLOP value is 0.038 per loop.

AutoAlert Final Report 47



oooooooooooooooooooooooooooooooooooooooooooooooo

[
wn
T

MFLOPs

sy —_ -
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Loop Number

Figure 7-2 Million Floating Point Operations (MFLOP) Required per Loop

The number of seconds Matlab takes to process each loop are plotted in Figure 7-
3; the average value is 0.1038 seconds per loop. Each loop processes an 80-point block of
audio samples, so the maximum throughput achievable using Matlab is 80/0.1038 = 770
Hz (i.e., points per second). Given that AutoAlert requires a 16,000 Hz throughput to
address the full frequency content of the input audio data, the 770 Hz rate with Matlab is
too slow for AutoAlert. If the data rate exceeds 770 Hz when using Matlab, Windows
will write to the ping-pong DMA buffers faster than the C Language Software Loop can
read them and the ping-pong operation will jam, thus causing the program to halt. For
example, if each buffer is 64 kBytes and the input data rate is 16,000 1-byte samples per
second, the program will halt in 2 X 64,000 / 16,000 = 8 seconds.
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Figure 7-3 Time Required by Matlab to Process Each Loop

To achieve a throughput rate of 16,000 Hz, the average loop processing time must
be 80/ 16,000 = 0.005 seconds. With the average computation load of 0.038 MFLOP per
loop determined above (Matlab MFLOP counts are valid for any implementation), the
average computational speed required is 0.038 / 0.005 = 7.6 MFLOP/second.
Commercially-available DSP boards such as the Fulcrum Delta-Sigma and AT-DSP2200
have computational speeds between 25 and 50 MFLOP/second, so it is safe to assume
that these boards are fast enough to process data at the rates required for AutoAlert.
Furthermore, the memory requirements for AutoAlert processing never exceed 256
kBytes — this amount is well below the 384 to 1,032 kBytes of memory offered on
commercially-available DSP boards.

Matlab was used because it was the tool with which the laboratory version of
AutoAlert was developed — resource constraints did not allow translating the Matlab code
into the C language for a commercially-available DSP board.
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8. SUMMARY AND PLANS

The AutoAlert project has achieved its goals. Sources of acoustic data have been
identified and obtained. A novel way to generate complex acoustic data setsusing a
combination of the FRESIM/AHS microscopic traffic smulation and statistical templates
for creating “virtual” scenario data was developed and applied. Thisincludes the ability to
vary the signal-to-noise ratio of the incident data to test algorithm sensitivity. Several
different types of features were analyzed for prototype data sets with and without
incidents. Based on this, severa spectral features were selected for defining the baseline
Hyperstate architecture for incident detection. A detailed baseline AutoAlert architecture
was defined, implemented, and evaluated.

Analysis of the prototype system on combined operationa field data from both
passing background traffic and accidents was compl eted. The resultsindicate good
accident detection and classification performance for the AutoAlert algorithmsfor arange
of realistic signal-to-noise ratios, even when additional synthetic high-amplitude low-
frequency noise is added to mask the input data. This added noise does inhibit accident
classfication and detection of passing vehicles, however. A hardware/software
implementation of the system to permit real-time data collection was also protoyped on a
Pentium PC, athough the prototype has not been optimized for real-time performance.
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