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INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS MANAGED BY THE
TRANSPORTATION RESEARCH BOARD (TRB)

This investigation was completed as part of the ITS-IDEA Program, which is one of three IDEA
programs managed by the Transportation Research Board (TRB) to foster innovations in surface
transportation. It focuses on products and results for the development and deployment of intelligent
transportation systems (ITS), in support of the U.S. Department of Transportation’s national ITS
program plan, The other two IDEA programs areas are TRANSIT-IDEA, which focuses on products and
results for transit practice in support of the Transit Cooperative Research Program (TCRP), and NCHRP-
IDEA, which focuses on products and results for highway construction, operation, and maintenance in
support of the National Cooperative Highway Research Program (NCHRP). The three IDEA program
areas are integrated to achieve the development and testing of nontraditional and innovative concepts,
methods, and technologies, including conversion technologies from the defense, aerospace, computer,
and communication sectors that are new to highway, transit, intelligent, and intermodal surface
transportation systems.

The publication of this report does not necessarily indicate approval or endorsement of the findings,
technical opinions, conclusions, or recommendations, either inferred or specifically expressed therein, by
the National Academy of Sciences or the sponsors of the IDEA program from the United States
Government or from the American Association of State Highway and Transportation Officials or its
member states.
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1. INTRODUCTION

1.1 Project Overview
AutoAlert applies new signal processing algorithms to passive acoustic data to

advance the state of practical acoustic incident detection techniques. These techniques,
originally developed for national defense applications, will perform reliable, automatic,
nearly instantaneous, all-weather incident detection under highly variable traffic
conditions. Effective operation of urban high-capacity ITS systems requires speedy
detection of incidents at chokepoints, such as tunnels, bridges and other aerial structures,
and dense urban arterials. Boston’s Central Artery/Tunnel (CA/T) project is an example
of a new ITS system where such detection is critical. AutoAlert  overcomes shortcomings
of loop and video detectors, such as their inability to distinguish between incidents and
congestion, and the need for a human-in-the-loop for video detection. The AutoAlert
processor “hears” an incident before congestion builds, and can be used either as an
independent detector, or its outputs can be combined (data fusion) with other detector
outputs for joint improved decisions and incident verification.

The problem of rapid, reliable acoustic incident detection is more complex and
difficult than the problems of freeway traffic flow monitoring or vehicle type
identification, for which acoustic sensors have already been applied. The AutoAlert
processor (see Fig. l-l) will make use of readily available commercial acoustic sensors
(e.g., AT&T IVHS NET-2000TM). What is key to AutoAlert  is the signal analysis
and detection algorithms that we will employ. The algorithms will provide a new level
of incident detection timeliness and reliability (low false alarms) by applying
sophisticated statistical models: Hidden Markov Models (HMM) and Canonical Variates
Analysis (CVA). These are used to analyze both short-term and time-varying signals that
characterize incidents.

1.2 Principles of Innovation

AutoAlert algorithms provide performance innovations that offer significant
improvements over today’s most “advanced” acoustic traffic sensor systems:

l Provide nearly immediate detection, with no alertment delays, before
congestion builds

. React to an incident directly, not just the symptom of an incident (e.g.,
congestion)

. Provide low false alarm rates via simultaneous analysis of short-,
medium-, and long-term acoustic feature patterns
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. Account for that fact that no two incident acoustic signatures (e.g., “screech,
crunch”) are identical by using probability-based modeling

. Apply unique new algorithms developed and proven by TASC for defense
and other commercial acoustic applications.

1.3 ITS Need
A number of sensor systems have been designed to monitor traffic conditions

(pressure sensors, in-ground loop detectors, digital video--based flow estimators and
acoustic sensors like the AT&T SmartSonicTM surveillance system). However, they do not
distinguish between impeded traffic flow and an incident. They can only provide inferred
detection of incidents because they only sense and report the resulting congestion. They
react to the symptoms of an incident, rather than to the incident directly, and are therefore
less effective. This limitation is particularly prohibitive in the monitoring of traffic
chokepoints that have limited or constrained access (e.g., tunnels, aerial structures), where
a single incident can cause back-ups to form at rates of hundreds of feet per minute.
Immediate detection and identification of incidents in such corridors improves traffic flow
and driver safety by reducing the time-lag between the actual event and the emergency
response. In addition, loop detectors have been historically prone to high failure rates,
while video camera installations are hampered by adverse environments, such as darkness,
precipitation, fog or dust, and require human monitoring of many cameras for immediate
detections. The AutoAlert processor provides automated, nearly immediate, direct
acoustic incident detection.

1.4 Technical Challenges

Incidents such as automobile accidents share common characteristics that make
them immediately recognizable to human listeners (screech of tires, fender crunch,
breaking glass). These characteristics are represented in the very short-term (transient)
acoustic pattern of the incident. They provide sufficient information for an automated
algorithm to distinguish an incident from average traffic background, as well as other
similar but benign background events (car-door slamming, car backfiring, sirens, thunder,
trucks hitting potholes). The design of a detection processing algorithm is critical to meet
such requirements because of

. The high degree of random variation in acoustic signatures from incident to
incident (e.g., no two tire-screeches are identical)

. Varying environmental (weather) and traffic conditions (volume,
composition)
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. The need to keep false alarm rates low in the face of these complexities.

These factors make the performance of classical and many modem detection and
identification techniques generally inadequate for this problem.

1.5 New Solutions with Broad Applications

TASC’s new Hyperstate algorithms, which are the core of AutoAlert,  overcome
shortcomings of classical detection and identification techniques by:

. Adaptively characterizing time-varying background noise, continually
adjusting for varying environmental and traffic conditions.

. Looking for abrupt changes from background noise (such as sudden changes
in energy patterns at certain frequencies) that could signal an incident.

. Automatically accounting for expected random variation in incident
signatures using built-in stochastic models.

. Using sophisticated simultaneous analysis of both long-term (several
seconds) and short--term (milliseconds) acoustic patterns to accurately
identify incidents while lowering false alarm rates.

. Reporting a probability/likelihood-based confidence level with each decision
to improve decision quality and allow “self-tests” of AutoAlert
performance.

The AutoAlert processor provides a set of computer-based algorithms that can be
mated with a variety of existing commercial acoustic sensors which may already be in
place for traffic flow monitoring. In addition to serving as a self-contained incident
detection product, the AutoAlert  technology can be used in several other ways:

. In conjunction with existing detection systems, serving as an automated cue
to operators to focus their attention or cameras on a specific area.

. Detection of acoustic emergency beacons, preprogrammed with distinctive
sound patterns, that are automatically emitted by distressed vehicles.

. Identify and track acoustic probes (using a vehicle’s unique acoustic
signature), thus offering independent estimates of traffic flow that can be
used to verify and calibrate other flow sensors.

. Analyze data from a variety of non-acoustic sources, including loop
detectors, using the underlying Hyperstate methodology.

The core AutoAlert  signal processing technology has already been developed
under defense applications and offers a unique capability not found in any existing

8
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l system. As a result, AutoAlert has the potential to provide a low-risk, high-value
capability for ITS.
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2. RESEARCH PLAN

2.1 Statement of Work
The AutoAlert  program proceeded in two stages: 1) Design and Preliminary

Evaluation, and 2) Feasibility Demonstration. Four tasks were accomplished to complete
Stage 1, and one task for Stage 2.

Stage 1: Design and Preliminary Evaluation

Task 1.1: Assemble Acoustic Database
Obtain pre-recorded accident data from sources such as the Insurance Institute for

Highway Safety, vehicle crash test performed by US. auto manufacturers, NHTSA, and
commercially available audio “sound effects”. Collect background traffic noise data under
varying operational conditions as required. These data will serve to build the very
important database component of “incident-fi-ee” data.

Task 1.2: Acoustic Feature Analysis
Analyze the acoustic database to define accident and incident types, and to

determine the optimal feature sets for acoustic discrimination of different incident types
(e.g. spectral energy, bispectral energy, transient types). Determine the range of dynamic
time scales required to capture both transient and longer duration sounds. For example, a
transient burst of acoustic energy around 500 Hz lasting from 0.5 to 3 sec may be one
feature of a vehicle impact.

Task 1.3: Optimized Algorithm Architecture
Tailor the AutoAlert algorithms to provide a processing architecture that is

optimized for incident detection and classification. Select appropriate Hyperstate model
parameters, such as the number of model states, length of time scales, and number of time
scales. Identify appropriate metrics for model goodness of fit to data. Select decision
procedures and criterion for operator alerts based on AutoAlert  processing. Implement a
prototype AutoAlert software system on a 486-class PC or low-end workstation.

Task 1.4: Preliminary Performance Testing
Using controlled experiment data extracted from the acoustic database, perform

preliminary AutoAlert  performance evaluation. The data will be used in a simulation
mode to develop test data sets that reflect varying signal-to-noise ratios (SNR).
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AutoAlert’s  false alarm and correct detection performance as a function of SNR for
selected incident types will be evaluated.

Stage 2: Feasibility Demonstration  for Operational  Data

Task 2.1: Final Performance Testing
Demonstrate the overall feasibility of AutoAlert processing in the laboratory.

Additional analysis of controlled experiment data begun in Task 1.4 will be completed.
Based on lessons learned, the algorithm will be modified as required. In addition, field data
collected in “uncontrolled experiments”, e.g. from recordings made on-site at a Boston
highway, will be evaluated in the laboratory. This will allow important features of the
algorithm, such as real-time background noise characterization and response to random
variations in incident characteristics.

2.2 Research Milestones

c

8

The two major milestones for this project have been completed, Milestone 1 and
the work leading up to it was reported in the AutoAlert Interim Report [Ref.l], while
Milestone 2 is reported on in this report.

Milestone  M1 (Stage 1): Establishment of acoustic database, design of an optimized
algorithm architecture, implementation of prototype algorithms based on this architecture,
and preliminary performance evaluation using controlled, synthetic data sets

Milestone  M2 (Stage 2): Overall feasibility demonstration using available “controlled
“and “uncontrolled” field data. Analysis of correct detection and false alarm performance
for realistic traffic environments, and operating-aiding functionality

2.3 Documentation of Results

4

This Final report, in combination with the Interim Report [Ref. 1], provides a
complete documentation of the AutoAlert project. Most of the material in the Interim
Report is not repeated in this report -- references to the Interim document are included in
this Final Report at appropriate points. The Interim Report covers the following topics:

.  Theoretical background for multiresolution Hyperstate signal
processing used in AutoAlert
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l Discussion of model development procedures

l Detailed description of sources of acoustic data and the generation of
complex hybrid acoustic data sets

l Analysis of incident and background characteristics to identify
discriminating features

l Preliminary AutoAlert  algorithm analysis architecture

l Appendix listing detailed results of feature analysis.

This Final Report covers the following topics:

Project overview

Research plan and milestones

Description of the acoustic data sets used for performance analysis

Identification of the key acoustic features for this data

Description of the optimized AutoAlert  algorithm architecture used for
performance analysis

Data processing results

Description of an AutoAlert  implementation for real-time data
collection and processing

Summary of project achievements.

4

b

3,

AutoAlert  Final Report 8

4

0



0

I

8

&

l

3. ACOUSTIC DATABASE

3.1 The Need for Synthetic, Controlled Signals
The fundamental resource in the prototype AutoAlert system is the acoustic

database. The acoustic database contains two types of audio data: background traffic
sounds which may be thought of as “noise”; and traffic incident sounds which are the
“signal” the system is trying to detect. The input to the detection algorithm described
above is the combination of background and incident sounds. In order to assess and refine
the prototype detection algorithm the acoustic database must be a controlled input.

3.2 Data Sources and Description
One approach taken to generate an acoustic database of synthetic traffic incident

data with which to test against is to employ a hybrid model of two real data sources, a
crash sound effects CD and field collected traffic recordings. The crash sound effects
were commercially-available digital recordings of specific car crash scenarios. Conditions
such as the number of cars involved, microphone location, vehicle direction, and
approximate speed about each crash were specified in textual format with each recording.
The field recordings are of “normal” traffic and were collected using AT&T’s SmartSonic
Sensors and stored in audiovisual (videotape) format. Data was collected on two lanes
of a four-lane divided highway under dry daylight conditions. The audio portion of the
field recordings was captured with the microphone array and individual cars and the
sounds they produce can be correlated using the visual portion of the recordings.

The sound effects recordings include 22 crashes, various horns and siren incidents,
and 10 tracks of normal traffic passing. With a total tape time of approximately 45
minutes, the usable incident and background data is about 12 minutes long. The duration
of the events vary widely. Some are as short as 3 seconds others as long as 20 seconds.
The remainder of the usable data is. in the form of normal traffic passing by the
microphone. While the text included with each recording provides a description of the
road and vehicles, there is no specification of the recording system used (e.g. microphone
type, source to microphone distance, or mastering process). Accordingly some
assumptions were made, however the overlap in traffic conditions between the field
recordings and these sound effects offered a qualitative and partially quantitative
consistency verification.

Four hours of AT&T field recordings, all in VHS format, were previewed. The
field recordings did not include any incidents which could have been used as signals.
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Twenty-five minutes of divided, four-lane highway traffic sounds were digitized from the
field recordings for use in generating the initial acoustic database of traffic background
noise. Normal operational sound from all types of vehicles, including motorcycles, cars,
trucks, busses, and tractor-trailer rigs, was captured. A single channel of the two-channel
VHS acoustic data was processed -- the two channels did not differ significantly. As an
additional future pre-processing step, the two channels of data could be combined to
reduce instrument or random acoustic noise.

In order to assemble the acoustic database and provide the detection algorithm
access to it, the digital recordings from both sources were converted into a common
format and stored in magnetic form on a PC. This common format, called WAV, can be
read by both MatlabTM and standard sound cards on the PC. This allows the database to
be assembled with Matlab  routines and then “played” through speakers for qualitative
verification.

3.3 Hybrid Data Sets For Analysis
In order to provide a sufficiently rich database and allow for parametric variation

of the relative magnitude of crashes relative to background data, a variety of mixtures of
operational field traffic recordings and individual crash sounds were developed. Table 3-l
summarizes the data sets that were developed.

Table 3-l Data Set Description Summary

0

b

0

c
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Varying Backgrounds and Loud Accidents -- Illustrations of Cases 1 through 3
are presented in Figures 3-1 through 3-3. The amplitude signature for each data case is
shown, with passing cars and accidents indicated. The accident amplitudes in these cases
reflect an accident occurring close to the microphone.

Accidents of Varying Loudness in Traffic -- Cases 2a through 2d are derived
from case 2. They are identical to case 2, except that the acoustic signature of the crash
has been scaled by the scale factor indicated in Table 3- 1. For example, the crash used in
case 2 has been scaled by a factor is l/2 to generate case 2a. The Accident Energy Ratio
given in Table 3- 1 is a measure of the relative intensity of signal and noise/background
(SNR), and is the ratio of the variance of the accident signal to the background signal over
the interval of the accident. It measures the relative intensity of the signal relative to other
traffic sounds. Figures 3-4 through 3-7 show the scaled signature of the accident segment,
the background (absent of passing cars or other noise), and the combined accident
signature and background for each case.

Accidents of Varying Loudness in Traffic and Noise -- Cases 2n and 2an
through 2dn correspond to cases 2 and 2a through 2d. They differ in that, in addition to
scaling, low-frequency noise with amplitude of approximately half that of the accident
has been added to the entire 118 second time series. The frequency range for this noise
was approximately 0-500 Hz, which overlaps the first Hyperstate bandpass feature
response range. This noise is representative of what might result from rain or the noise
from traffic on a distant highway, and was included to evaluate its impact on algorithm
performance. The Accident Energy Ratio given in Table 3-1 is the ratio of the variance of
the accident signal to the noise signal over the interval of the accident. It measures the
relative intensity of the signal relative to other traffic sounds and noise. Figures 3-8
through 3-12 show the scaled signature of the accident segment, the low-pass noise, and
the combined accident signature and noise for each case.
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4. ACOUSTIC INPUT DATA CHARACTERIZATION

4.1 Analysis of Incident and Background Features
As a precursor to designing the detection algorithm and the acoustic database, the

incident and background acoustic data was characterized according to three general signal
features: wave form amplitude; central statistical moments (e.g. mean, kurtosis) ; and
power spectral density. The purpose of this characterization was to identify individual
features or combinations of features that could be used to distinguish an incident from the
background and possibly even one type of incident from another. Identifying the
differing features of vehicle crash sounds and passing of vehicle quantitatively is an
important step toward building a Hyperstate model to describe the dynamics of those
features over time. To do this a combination of features was reviewed. The following
section outlines the signal feature characterization and analysis.

The raw digital data from both sources is stored as sixteen bit wave forms sampled
at 44.1 kHz. This high resolution data is down sampled to 16 kHz before processing to
reduce the computational requirements, and because all of the significant signal features
could be observed at frequencies less than 8 kHz (determined by the Nyquist theorem).
Individual events are then extracted from the down-sampled data and stored in separate
files. The three types of signal features are derived from each event file.

4.2 Crash Data Features
For the first step of Hyperstate analysis, spectral characteristics were chosen as

the features to use to define the states of the Hyperstate models. This is because of the
strong, consistent incident “signature” produced by the crash events in out database. In
future refinements of the baseline algorithm architecture, additional features described in
Section X will be considered as well. Figure 4-l shows a plot of frequency intervals in
which significant energy was present at some time around a crash, for several
representative crashes in the database. Looking down the graph vertically at any interval,
we can see that several intervals are common to most crashes. We have selected four of
those intervals (spectral bands) for analysis in the prototype. They are:

. 100-400 Hz

. 800-l 140 Hz

. 1560-1760 Hz

. 2200-2700 Hz
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5. OPTIMIZED ALGORITHM ARCHITECTURE
This section describes the optimized AutoAlert  algorithm that was implemented

for analysis of operational data. For a detailed discussion of the general form and
mathematical theory underlying the multiresolution Hyperstate Algorithms used to
implement AutoAlert, see the description in the AutoAlert project’s Interim Report [Ref.

1].

5.1 Multiresolution Algorithm Overview
The core algorithms for the AutoAlert  processor belong to a unique class of

Hyperstate algorithms that have already been developed by TASC. They have been
evaluated on acoustic data in other application areas, such as underwater transient
detection and vehicle sound quality analysis. The primary objectives of this concept
feasibility investigation are to tailor the algorithms for AutoAlert’s  incident detection for
ITS systems, and to rigorously evaluate their performance.

The Hyperstate algorithms to be used in the AutoAlert processor provide new
levels of performance in “acoustic fingerprinting.” This is achieved by using a stochastic,
model-based procedure that can analyze the dynamics of a time-varying process on
multiple time scales. Models corresponding to persistent acoustic feature patterns for
incidents and non-incidents are developed, stored and used to scan for incidents. Models
that characterize the changing traffic background level are computed adaptively, in real
time.

A hierarchy of Hidden Markov Models (HMM), in conjunction with adaptive
Canonical Variates Analysis (CVA), is the mathematical framework that comprises the
Hyperstate procedure. A family of these HMM models, operating on multiple time
scales, is used to classify complex patterns of time-varying acoustic features (such as
frequency dynamics) that differentiate traffic background noise from sounds associated
with incidents. Such models have been applied recently to complex acoustic analysis
tasks, such as speech recognition.

5.2 Algorithm Architecture
The general AutoAlert processing architecture is depicted in Figure 5-l. Analysis

of operational field test data shows that a particular set of five feature identification filters
and two temporal resolutions are appropriate for optimized data processing. Figure 5-2
illustrates the architecture used for data processing.

l

b

w
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Background Modeling -- Acoustic data is processed along two paths. The first
involves adaptive modeling of the background noise in the traffic scene, such as rainfall or
traffic sounds from distant roads. Canonical variates state-space modeling is used to
compute a new background model every 0.1 sec. A statistical measure of similarity
between the current and previously computed background model, called the Discriminant
Information, is computed to decide if the background is slowly varying or changing
rapidly. If the background is slowly varying, the latest model is adopted. If the
background model has changed significantly over the last 0.1 sec, this could indicate that a
vehicle has come into range of the sensor, and the background model is not adopted. This
allows slow evolution of the background to be tracked, while preventing acoustic
information from passing vehicles or crashes from being put into the background model.

Spectral Feature Library -- In order to define the identification filters for the
Stage 0 Hyperstate processing illustrated in Figure 5-2, filters tuned to each of the four
frequency bands identified in Section 4.2 and Figure 4-l are implemented. The filters are
implemented using state-space whitening filters with frequency responses given by the
spectrum plots in Figure 5-3. These four filters are combined with an all-pass filter
(uniform frequency response) to produce the five labeling filters. These filters are
designed to have maximum response when data in their respective pass-bands are
processed. Since these pass-bands were selected to match accident features, they are
optimized for this detection.

The adaptive background model which is continuously computed by AutoAlert is
used by AutoAlert as a “subtraction” filter (‘whitener”) to remove background effects
while the spectral features are searched for. This filtering must be accounted for in
defining the Feature Model Filters, causing a slight transformation of the original
frequency response of the baseline feature library models. This is illustrated in Figure 5-4.
The likelihoods for each of the combined feature models are computed every 0.005 sec, in
order to allow rapidly varying and transient acoustic effects to be captured.

Hyperstate Modeling -- The final stage of the optimized architecture
involves multiresolution feature modeling using Hyperstate models. Three Hyperstate
models were developed, one representing the dynamics on a 2.5 second time scale for each
of the categories: background (no accidents or vehicles), passing vehicles, and accidents.
Five hundred likelihoods from the feature identification stage are processed every 2.5
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seconds, and each 2.5 seconds the Hyperstate analysis identifies which of the three
classification models is most likely, using a maximum likelihood criterion.
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l Model 5 is an all-pass (white noise) model

Figure 5-3 Spectral Feature Library for AutoAlert Prototype
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6. DATA PROCESSING RESULTS

6.1 Summary
Detecting Accidents - Using the prototype AutoAlert algorithm described

above, the data cases described in Table 3-l were analyzed, with the result summarized in
Table 6-l. As the table indicates, the AutoAlert  algorithms do well at detecting the
accidents for a range of accident energy ratios, all the way down to accident scale factors
of l/4, for both the cases with and without added noise. This reflects good real-world
performance, since scale factors of l/8 and lower correspond to accidents that occur that
are quieter than the passing vehicles on the highway. For low signal-to-noise ratios scale
factors of l/8 and l/16) in the absence of added low-pass noise, accidents are detected,
but are classified as passing vehicles rather than as accidents.

Table 6-l Summary of Classification Performance

2cn l/8 yes 0.11
2dn l/l6 yes 0.055

Detecting Passing Vehicles -- In addition to accident detection, the AutoAlert
classifier was also designed to detect passing cars and differentiate them from accidents.
The algorithm did this successfully for scale factors down to l/l6 in the absence of
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* lowpass noise. As shown in the next section, both single and multiple passing vehicles
were detected and differentiated from accidents and the background.

Effect of Lowpass Noise -- This noise was added to stress the performance of the
AutoAlert algorithm and evaluate how it would perform in the presence of other
significant distracting sounds, such as rainfall. Table 6-l indicates that the addition of this
noise did not hinder accident detection, but it did make passing vehicles more difficult to
detect. This is due to the added low-frequency noise (in the frequency range from O-500
Hz) which shares characteristics in common with the features and feature patterns of the
passing cars, and effectively “masks” them from the detector. Because the accident
signature was composed of a more complex collection and pattern of frequency features,
it was detectable even in the presence of the added low-pass noise.

6.2 Detailed Analysis Results
This section presents the detailed data processing results that were used to

develop Table 6- 1, including direct analysis of the Hyperstate algorithm processing.

Ir

*

6.2.1 Varying Backgrounds and Loud Accidents - This analysis includes a
discussion of how to interpret the Hyperstate/AutoAlert  intermediate data displays.
Figure 6-l shows the amplitude plot of the accident and passing vehicles for Case 1.
Figure 6-2 shows the first stage Hyperstate output data. Each of the five Feature
identification filters is listed on the vertical axis. Time is on the horizontal access. The
gray arrow indicates where the accident occurred in the data. Every 5 msec, a circle is put
on the graph corresponding to the most likely of the five feature models. The distinct
pattern associated with the crash, exciting all five feature models with a few seconds in a
specific pattern, is clearly visible.

Figure 6-3 shows the output of the AutoAlert classifier. Each of the three
possible classification decisions, “Crash”, “Passing Vehicle”, or “Background” is listed
on the vertical axis. Every 2.5 seconds, AutoAlert  makes a decision as to which of the
three event types is most likely. That sequence of decisions is shown by the circles on
the plot. AutoAlert correctly identifies the accident and the passing vehicles,
distinguishing both from the background.

Detection results from Case 2, involving multiple passing cars, is shown in Figures
6-4 through 6-6. The accident, whose time of occurrence is indicated by the gray arrow in
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the figures, is correctly detected, as well as the passing vehicles. Periods of vehicle-free
background are also identified correctly.

Similar good detection and event differentiation performance is also seen in the
Case 3 results presented in Figures 6-7 through 6-9. In this case a two car accident
(collision) occurs. AutoAlert correctly identifies the event type and span of the two
accidents. Because the acoustic signatures of the two accidents overlap in time (one event
is still being completed while the other is beginning) and have a separation that is smaller
than the 2.5 sec resolution of the classifier--there is no gap in the detection of the two
accidents.
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6.2.2 Accidents of Varying Loudness in Traffic
Cases 2a through 2d are identical to Case 2, except that the accident signature in

Case 2 was progressively reduced by a factor of l/2 while passing vehicle traffic remained
unchanged. Figures 3-4 through 3-7 show the segment of each dataset that contains the
accident and the relative amplitudes of the scaled signatures, plus the local background
with which they are combined to form the input signal to AutoAlert.  Figures 6-10
through 6-13 show the results of the AutoAlert feature labeling step in the top half of
each figure, and AutoAlert classification results in the bottom half of each figure.

For Cases 2a and 2b (with accident scale factors of l/2 and l/4 respectively), the
accident are detected and correctly identified. For Cases 2c and 2d (with accident scale
factors of l/8 and l/16 respectively), the accidents are detected, but are classified as
passing cars rather than accidents. These missed identifications are due to the low signal
strength (accidents are quieter than the passing cars) associated with these cases. For all
cases, the passing vehicles are correctly identified.
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6.2.3 Accidents of Varying Loudness in Traffic and Noise
Cases 2n and 2an through 2dn are identical to Cases 2 and 2a through 2d,

except that additional low-frequency noise was added uniformly to the acoustic time
history, as described in Section 3. Figures 3-9 through 3-l 1 show the segment of each
dataset  that contains the accident and the relative amplitudes of the scaled signatures, plus
the added noise with which they are combined to form the input signal to AutoAlert. The
amplitude of the noise is large relative that of the accident, even for the first signature
scale factor of l/2. Figures 6-14 through 6- 18 show the results of the AutoAlert feature
labeling step in the top half of each figure, and AutoAlert  classification results in the
bottom half of each figure.

The results parallel those obtained for the case described in Section 6.2.2 where no
additional low-frequency noise was added. For Cases 2n, 2an and 2bn (with accident scale
factors of l/l, l/2 and l/4 respectively), the accident are detected and correctly identified.
For Case 2cn and 2dn (with accident scale factors of l/8 and l/l 6), the accidents are not
detected. These missed identifications are due to the low signal strength (accidents are
quieter than the passing cars) associated with these cases. For all of these, cases, the
passing vehicles are not detected. This is due to the added low-frequency noise which
shares characteristics in common with the features and feature patterns of the passing
cars, and effectively “masks” them from the detector.

a

AutoAlert  Final Report 41





l

a

l

l

l

-0 20 40 60 80 100 120

3.5 , ,  ,

3- l e

2.5 -

2-

1.5 -

1 ’
0 20 40 60 80 100 120

Time (sec)

Figure 6-16 Case 2bn: Feature Labeling and Classifier Output
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Figure 6-17 Case 2cn: Feature Labeling and Classifier Output
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7. REAL-TIME DATA COLLECTION
The objectives of this part of the research were to demonstrate prototype

operation of AutoAlert in a real-time data capture mode, once its performance had been
demonstrated with controlled, archived operational field data. Resource constraints did
not allow for extensive optimization of the algorithm performance in the real-time mode,
but the implementation of a prototype algorithm for real-time data processing was
completed and analyzed.

7.1 Algorithm Implementation

Using results of related TASC work on restructuring of Hyperstate algorithms to
allow them to run in serial, vs. batch, mode, AutoAlert  was converted to a serial
implementation in Matlab and implemented on a PC hardware platform that supports
real-time data capture. This implementation uses a software loop written in the C
language to:

l Obtain a block of real-time audio data from the PC analog-to-digital
(A/D) converter hardware through the low-level Audio Services of
Microsoft Windows 3.1

l Pass the data block to Matlab for processing by the serialized
Hyperstate algorithms.

l Display the Hyperstate algorithm output for this data block (i.e., the
most likely model: No Accidents/Vehicles Detected, Passing Vehicles
Detected, or Accident Detected) and save it to disk.

The software continuously repeats the above three steps and thereby converts a
continuous stream of input data from the A/D converter into a continuous stream of
model likelihoods.

7.2 Prototype Hardware Suite and Architecture

Q

The architecture for the prototype real-time AutoAlert is shown in Figure 7-l.
As shown on the left in the figure, this architecture uses the A/D Converter on the
ENSONIQ Soundscape Wavetable Audio card to convert audio signals from the
condenser microphone into digital format. The low-level Audio Services of Microsoft
Windows 3.1 represent the standard interface between the ENSONIQ card and the C
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Language Software Loop. This interface is implemented using a ping-pong direct memory
access (DMA) buffer scheme: the Windows operating system fills one of a pair of
memory buffers while the C Language Software Loop reads the other. Windows and the C
Language Software Loop alternate between writing/reading each DMA buffer- hence the
name ping-pong. After the C Language Software Loop reads a DMA buffer, it passes the
block of digitized audio data to Matlab,  which executes the serialized feature identification
and Hyperstate categorization algorithms on the data block and then passes the model
likelihoods back to the C Language Software Loop, where it is displayed and stored.

Condenser
Microphone

Figure 7-l Prototype AutoAlert Real-time Architecture

7.3 Performance of the Prototype and its Optimization

The basic structure of this implementation proves the concept of real-time
Hyperstate processing for AutoAlert. However, the rate at which the software loop
repeats directly affects throughput performance and is limited by the performance of
Matlab and the Windows 3.1 operating system. Specifically, this implementation uses the
Windows 3.1 operating system to simultaneously execute the tasks of input A/D
conversion, digital signal processing (DSP), and output display/storage. Windows 3.1 is
also used for communications between the tasks. Microsoft Windows 3.1 was not
optimized for this type of real-time multitasking operation. As a result, the throughput
performance of this implementation would be improved if the same structure were hosted
on a dedicated DSP board (e.g., Data Translation’s Fulcrum Delta-Sigma or National
Instruments’ AT-DSP2200). These boards are designed specifically to multitask input

0
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l
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A/D conversion, DSP, and output display and storage. Microsoft Windows was used
because it was the operating system under which the laboratory version of AutoAlert was
developed - resource constraints did not allow rehosting of the structure onto a DSP
board.

The throughput performance of this implementation is also limited because it uses
Matlab to perform the DSP functions of feature identification and model classification.
Matlab is very flexible for developing algorithms in the laboratory, but it is not optimized
for real-time use. As a result, each iteration of the C Language Software Loop is
unnecessarily slowed when Matlab executes the serialized feature identification and model
classification algorithms.

The following is an analysis that shows:

. The current Matlab implementation is too slow to operate
continuously at the throughput rate required for AutoAlert

l The framework for this implementation will execute quickly enough for
AutoAlert if it is rehosted in the C language on a commercially-
available DSP board.

Figure 7-2 illustrates the number of Matlab floating point operations required per
iteration of the C Language Software Loop during real-time AutoAlert execution.
Background model processing (every 100 loops) and Hyperstate categorization (every
500 loops) require 2.25 and 0.25 million floating point operations (MFLOP)
respectively, but these tasks occur infrequently compared to the regular calculations that
require 0.016 MFLOP for each loop. The average MFLOP value is 0.038 per loop.

l

l
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8. SUMMARY AND PLANS

The AutoAlert  project has achieved its goals. Sources of acoustic data have been
identified and obtained. A novel way to generate complex acoustic data sets using a
combination of the FRESIM/AHS microscopic traffic simulation and statistical templates
for creating “virtual” scenario data was developed and applied. This includes the ability to
vary the signal-to-noise ratio of the incident data to test algorithm sensitivity. Several
different types of features were analyzed for prototype data sets with and without
incidents. Based on this, several spectral features were selected for defining the baseline
Hyperstate architecture for incident detection. A detailed baseline AutoAlert  architecture
was defined, implemented, and evaluated.

Analysis of the prototype system on combined operational field data from both
passing background traffic and accidents was completed. The results indicate good
accident detection and classification performance for the AutoAlert algorithms for a range
of realistic signal-to-noise ratios, even when additional synthetic high-amplitude low-
frequency noise is added to mask the input data. This added noise does inhibit accident
classification and detection of passing vehicles, however. A hardware/software
implementation of the system to permit real-time data collection was also protoyped on a
Pentium PC, although the prototype has not been optimized for real-time performance.

8
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